#### Software Best Practices in Practice

Anjali Pal anjalip@cs.washington.edu

The talk I thought I was going to give:

**Academic Code Industry Code** Research Code

#### The talk I'm actually going to give:



#### Guiding questions

- Who writes the code?
- Who maintains the code?
- Who uses the code?
- Who decides what the code should do?
- Who is impacted by bugs or incorrect code?

# Software development is fundamentally about people, not about code

# Software development is fundamentally about people, not about code

So our development practices should reflect this!



Solo Developer



Small Team



Large Team



- Probably no real version control
- No code review
- Minimal tests
- Minimal comments
- Fairly small codebase



Small Team

- Version control
- Small commits (or painful merge conflicts)
- Code review
- Style guide
- Tests



Large Team

- Clear lines of ownership between teams
- Large, potentially old codebase
- No one knows everything about the codebase
- Constant turnover









- Lots of code is forgotten shortly after its written
- "Good design" less important
- It's okay to optimize for speed/ease over long-term maintenance sometimes



Same Team

- Testing pipeline
- Code review spreads expertise
- Easier to maintain code you know
- Consistent work keeps code fresh in mind
- Older code is harder to maintain



Different Team

- Code doesn't capture why decisions were made
- If decisions weren't documented and the people who made them are no longer involved, you are likely to repeat some mistakes
- Or worse, be afraid to make changes

Software Package

Command Line Tool

API

Developers

Website App

"Normal Users"

Specialized Programs

"Expert Users"

Software Package
Command Line Tool
API

Developers

- Clear APIs
- Good documentation
- Easy to install + get started
- Open source

#### How do users get new versions of the code?

Versioned Releases



Website App

"Normal Users"

- UI/UX is extremely important, and often undervalued
- Accessibility should be built in from the beginning, not added later
- Lots of things to consider for a large, diverse user base: time zones, translation, device sharing, privacy, etc

#### How do users get new versions of the code?

**Deployed Services** Elastic Load Balancer DB Amazon RDS (PostgreSQL) Multiple EC2 Instances **Auto scaling Group** Amazon Simple Storage Service (S3)

#### How do users get new versions of the code?

**Deployed Services** 





Specialized Programs

"Expert Users"

- Hard to make changes
  - Government contracts
  - In-depth user training
- Expert/power users have different UI/UX goals than average users

#### How do users get new versions of the code?

Specialized Programs



# Who decides what the code should do?

Who decides what the code should do?





Bad grade



User-facing Product

- Site down (company loses money)
  - Impact depends on what people rely on the software for
- User data loss
- Leak sensitive information about customers



Healthcare Software

- Miss important signal in patient heart rate, blood pressure, etc
- Too much or not enough medicine
- People could die



- Widespread implications because this code underlies pretty much everything
- Security vulnerabilities especially scary



#### Testing



Testing

- Ensures that the code does the right thing on a specific input
- Code coverage = Percentage of code executed while running tests
- Good testing can increase confidence in the system and prevent regression

#### Testing

Program testing can be used very effectively to show the presence of bugs but never to show their absence

- Edsger W. Dijkstra

#### Verification

How can we **prove** that our program has some property?

#### Hoare Logic

## { P } C { R }



Tony Hoare

If P is true before execution...

And C terminates...

Then R will be true after execution

#### Hoare Logic

### { P } C { R }

```
\{x = 2\} skip \{x = 2\} \{x = 1\} if x > 0 then y = 1 else y = 2 \{x = 1; y = 1\}
```

#### Hoare Logic

System for **proving** properties of programs

Why am I writing this code?

Who am I writing this code with?

Who am I writing this code for?

What is the long-term plan for the code?

Who could get hurt if the code goes wrong?



### Questions?

Anjali Pal anjalip@cs.washington.edu